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Analysis of Asymmetric Stripline by
Conformal Mapping

J. S. RAO AND B. N. DAS

,4 bstract--Tl& paper presents amdysis of asymmetric stripfine using a

conformal mapping technique. Tbe expression obtained for the characteris-

tic impedance shows its functional dependence on the dimensions of the

striplline. Equations for equipotential and flux lines and an expression for

field distribution in the stripline are derived. Plots of impedance variation

with strip width and strip displacement are presented.

1. INTItODUC’TION

A

NtJMBER of investigations on the formulation of

.~ impedance, potential, and field distributions of sym-

metric striplines have been reported in the literature.

Some as ~ects of the striplines with an offset center con-

ductor between the ground planes (asymmetric striplines)

have been analyzed using numerical techniques. ~ammler

[1] lmas found values of capacitance for different displace-

ments and widths of the center conductor using Green’s

function -integral equation technique. Mittra [2] has de-

veloped the modified residue calculus technique (MRCT)

for finding charge and potential distributions.
In the present work, a conformal mapping technique is

used to find the impedance potential and field distribu-

tions for an asymmetric stripline. Since the structure is

asymme Lric with respect to the plane of the strip, it is not

possible to consider only one quadrant for the purpose of

conformal mapping as was done by Collin [3]. Hence the

transformation of one half of the structure which is sym-

mehic with respect to the vertical plane is used in the

present analysis. For this purpose the conformal transfor-

mation used by Yang and Lee [4] in connection with the

transformation of two curved cylindrical plates into a

rectangle has been employed. It is observed that a part of

the expression for the transformation obtained by Yang

and Lee [4] does not follow from the method of integra-

tion suggested in the literature [5]. The exact form of the

expression is given in the present paper.

Application of the above transformation to the struc-

ture shown in Fig. 1 leads to a set of equations from

which the structure required to satisfy the impedance

requirements can be determined easily. The transforma-

tion involves elliptic integrals of the first and third kind.

By separating the elliptic integrals with complex argu-

ments ir!to real and imaginary parts, exact equations for
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Fig. 1. An asymmetric stripline and its ecmformal representation.

the equipotential and flux lines are obtained. An expres-

sion for the field distribution in the cross section of the

stripline is derived from the complex lpotential function by

taking the negative of the complex conjugate of its deriva-

tive. This transformation is more general in that it is

applicable to a perfectly symmetric structure also. Varia -

tion of characteristic impedance with strip width and strip

offset is evaluated. Distribution of the electric field at the

top and bottom ground planes is determined for a particu -

lar case.

II. CONFOItMAL MAPPING

Consider the asymmetric stripline of Fig. l(a). Ground

planes are assumed to be infinitely wide, and the strip is

assumed to have negligible thickness. The Schwarz–

Christoffel transformation that transforms the upper half-

plane of Fig. l(b) (t-plane) into the shaded region of ]Fig.
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l(a) (z-plane) is given by [4]

J
Z=co ‘

(t+(l-A)/Yz)dt
+B

0 (t+l/ti )[(t+l)(t- l)(t+l/fi )(t-l/m)]”2
(1)

where A, B, CO, m, and n are constants and

1–A
O<n<m<l and O< — <1.

n

Carrying on integration in terms of elliptic integrals and

elliptic functions (1) takes the form

Z= C[u– A{~(n; ulm)–fif(m,n, u)}]+B (2)

where C= COG , t=sin ~=sn u, and u= F($lm) is the

incomplete elliptic integral of the first kind, and II(n; UIm)

is the incomplete elliptic integral of the third kind [6], [7].

The exact expression for f(m, n, u) derived by following

the method suggested in the literature [5] is given by

f(m, n,u) =
1

2~(1–n)(m–n)

. in

{

2(1–n)(m–n) +(l–nsn2u)(n +nm–2m)

n(2n–m– 1+2~(1–n)(m–n) )(1–n snzzf)

2nl/(1-n)(m-n) cn u dnu
+

n(2n–m– 1+2~(1–n)(m–n) )(1–n sn2z4)1

(3)

where sn u, cn u, and dn u are elliptic functions. Substitut-

ing the boundary conditions at the five points P,, P2, P~3

Pq, and P5 into (2) and solving the resulting set of equa-

tions, the relations between the constants A, B, C, m, and

n, and ground plane spacing b,

separation between the strip and

bl are obtained as

A=
K(m)

II(n; K(m)lm)

strip width d, and the

the lower ground plane

B=& In
{

m–1

}
+ ibl

2n–m–l+2V(l –n)(m–n)

c=–:~
(1-n) (m-n)

Afi

(4a)

(4b)

(4C)

F(sin-lVn/m Im)
1–2+=

K(m)
(4d)

d V(l-n)(m-n)

%=
[F(sin-’alm)-AII(n; sin-’alm)]

TA d

–*in

1~

(1 -n)(I -ma’) -~(m-n)(l-a2)

i

(4e)

(1-n) (l-ma2) +~~

where K(m) and H(n; K(m)l m) are complete elliptic in-

tegrals of the first and third kind, respectively, T =

3.14159, and a=(l– A)/fi .

The Schwarz–Cristoffel transformation that maps the

upper half-plane of Fig. 1(b) (t-plane) into a rectangle in

Fig. l(c) (w’-plane) is given by [4]

JW’=u’+iv’=C1 *
dt

+ B,

0 ~(1 - t2)(l - mt2)

=CIF(@lm)+ B,. (5)

Evaluating the constants C1 and B1 from the boundary

conditions at the points P,, P2, Pb, P5, and P6, the trans-

formation is obtained as

F(@lm)
W’=u’+iv’=– —–

F(sin- 1_ /m) + iK’(m)

K(m) K(m) K(m) “

(6)

UOand 00 shown in Fig. 1(c) are given by

240=1+ ‘(sin-lW Im)
K(m)

(7a)

wo=K’(m)/K(m). (7b)

In the limiting case, i.e., when the strip is placed exactly

midway between the ground planes, the transformations

become

Z=% in
{

m–1

1
+ibl

2msn2u–m–1+2~ cnudnu

(8a)
and

w,= _ F(+lm) + iK’(m)— —
K(m) K(m) “

The expression for strip width reduces to

d/b= ~ in
{}

l+fi

l–m

(8b)

(8c)

or fi = tanh (~d/2b) and is of the same form as that

obtained by Collin [3].

HI. CHARAC~EFUSTIC IMPEDANCE

One half of the structure shown in Fig. l(a) is trans-

formed into a parallel plate configuration as shown in Fig.

1(c). The width of the parallel plates is 2, and 00 is the

separation between them. The total capacitance per unit

length of the stripline is twice that of the parallel plate

capacitor in Fig. 1(c) and is given by

46.6,
cf.—.

v“
(9a)
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Fig. 2. Variation of characteristic impedance with strip width for diffe-
rent strip displacements.

The characteristic impedance of the stripline is given by

Zo. =..o
v?

_ 3077 K’(m)— . . —
~ K(m) “

(9b)

The functional dependence of the characteristic imped-

ance on the dimensions of the stripline is evident from

(4a) -(4e), (9a), and (9b). For a given impedance of the

line, the parameter m of the elliptic integrals is obtained

from (91)). The characteristic n of the elliptic integral of

the thircl kind is obtained from (4d). Remaining constants

A, B, arid C follow from (4a), (4b), and (4c), respectively.

Finally, strip width is obtained from (4e). Variation of

characteristic impedance with strip width for different

displacements (bl/b = 0.5, 0.4, 0.3, 0.2, and 0.1) of the

strip from the center is plotted in Fig. 2.

IV. EQUIPOTENTIAL AND FLUX LINES

Since t = sin ~, + is complex for any arbitrary point in

the complex t-plane of Fig. 1(b). Separating the elliptic

integral with complex argument in (6) into real and im-

aginary parts [7], the complex potential function is ob-

tained as

W = u’ -1- it)’

F(~[m)– F(sin-’’Vm/m Im)=_.
K(m)

(lea)

Fig. 3. Distribution of equipotential and flux lines for bl/b = ![/3

and V< Zo= 80 U — Equipotentird; --- Fluxhne.
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Fig. 4. (a) Potential distribution in the plane of the strjp for bl~b.=

1/3 and d/b = 0.644. (b) Field distribution on the ground planes.

sin
cosh [ sin q = —

cos2y + m sin2~ sin2y

cos /3 cos y sin y 1 – m sin2/3
cos q sinh {=

cos2y + m sin2j3 sin2y “

The equation

u’=-& [F(131m)+F’(sin-’fi

where ml = 1 —m represents the flux line, and the equation
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K’(m) – F(y/mI)
d =

K(m)
(1OC)

represents the equipotential line.

From the above equations, flux and equipotential lines

are determined for b, /b = 1/3 and ~ ZO = 800 and are

plotted in Fig. 3. Potential variation in the plane of the

strip is presented in Fig. 4(a).

V. EXPRESSION FOR FIELD DISTRIBUTION

The electric field in the cross section of the stripline is

given by [8]

E=-%*
()

(Ila)

where the asterisk denotes a complex conjugate. Since the

transformation of the stripline in Fig. 1(a) into the flux

potential plane of Fig. l(c) is obtained in two steps, (1 la)

becomes

‘=-(%’”%)* (llb)

From (2), (6), and (1 lb) the expression for the field

distribution is obtained as

h/b

Fig. 5. Variation of the ratio of the maximum values of the field on the
ground planes with strip displacement.

VI. CONCLUSIONS

The analysis presented here is quite general and can be

used for the determination of impedance, potential, and

field distributions of symmetric as well as asymmetric

1

where

Dl=(l–n)(nz-n)

D2=2n–m–l

D3=n+nm–2m

and v is the potential difference between the strip and

ground plane. In the perfectly symmetric case, the expres-

sion for the field reduces to

(12b)

Thus the electric field in the cross section of the strip-

line has been obtained as an explicit function of the

complex variable t, and its real and imaginary parts

represent the vertical and horizontal components of the
field, respectively. From (2)–(4) and (12), field distribu-

tion in the cross section of the line is evaluated. Normal-

ized field distributions at the top and bottom ground

planes calculated for b,/b = 1/3 are presented in Fig.

4(b). In the same figure, field distribution at the ground

planes for the perfectly symmetric case obtained from

(12b) is also presented. The ratio of the maximum values

of the electric field at the two ground planes as a function

of the strip displacement, keeping the strip width constant

(d/b =0.5), is plotted in Fig. 5.

striplines. The analysis leads to exact equations for the

equipotential and flux lines and enables one to calculate

potential and field distribution from which the charge

distribution on the strip can be easily evaluated. The rate

of decay of the field, with distance from the plane of

symmetry, is high, and the field decays to nearly 1 percent

of its original value at a distance of about 1.6 times the

ground-plane spacing.

The field distribution obtained is useful for the formula-

tion of discontinuity problems [9] of apertures in the

ground plane of asymmetric stripline. Investigations on

the radiation properties of slots in the ground plane of a

symmetric stripline reveal that there is appreciable loading

on the line feeding the slot even when the slot is displaced

[10]. This presents a problem in the design of slot array

for narrow beamwidth. It is possible to reduce such load-

ing by using a radiating slot in the farther ground plane of

an asymmetric structure. The analysis on the field config-

uration of the asymmetric stripline, therefore, is of practi-

cal interest.
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Field and Network Analysis of Interacting
Step Discontinuities in Planar

Dielectric Waveguides

TIJLLIO E. ROZZI, SEN1OR MEMBER, IEEE, AND GERARD H. IN’T VELD

A ~bstract—Planm dielectric waveguides play an important role in ekc-

troqptics and at millimeter frequencies. In many laser conf@rations and

integrated opticaf components, grooves are etched in the planar surface or

overlays are depmsited on it. The step is an idealization of such a

discontinuity. Step dfscontfnrdties are seldom isolated. Mostly a cascade is

employed. The aim of this paper is to derive, from a rigorous field analysis

an accurate finite network description for such cascades, either finite or

infiiite, periodic or aperiodiq which takes account also of the continuous

spectrum. Nmnerieal examples ure given.

L INTRODUCTION

T

~ HF. ANALYSIS of discontirmities in open dielectric

waveguides is still in its infancy, and very few tech-

niques are known [1]. In this paper we study an important

class of discontinuities, namely, the cascade of steps in a

planar dielectric waveguide, such as shown in Fig. 1. This

is a basic configuration occurring in passive and active

components for integrated optics and optical communica-

tions, such as the grating coupler, the transformer/eche-

lon, and the distributed feedback laser. Corrugated dielec-

tric waveguides are also used for millimeter waves and as
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Fig. 1. Cascade of steps in a planar dielectric waveguide. (al Cascade.,
of symmetric steps. (b) Cascade of asymmetric steps.

microwave antenna feeds. Various ,approxinnations have

been introduced for dealing with small discontinuities

between monomode guides (see, for instance, [1]-[4]). The

infinite periodic case has been treated extensively and

rigorously (see, for instance, [5] for a most comprehensive
list of references (287), as well as [6]). The problem of an

isolated, large step between two multimode waveguiides

has been treated rigorously [7]. The general problem c~f

arbitrarily large, aperiodic interacting steps is unsolved up

to date. However, the optimum performance of various
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