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Analysis of Asymmetric Stripline by
Conformal Mapping

J.S. RAO anD B. N. DAS

Abstract-—This paper presents analysis of asymmetric stripline using a
conformal mapping technique. The expression obtained for the characteris-
tic impedance shows its functional dependence on the dimensions of the
stripline. Equations for equipotential and flux lines and an expression for
field distribution in the stripline are derived. Plots of impedance variation
with strip width and strip displacement are presented.

I. INTRODUCTION

NUMBER of investigations on the formulation of

\ impedance. potential, and field distributions of sym-
metric striplines have been reported in the literature.
Some asoects of the striplines with an offset center con-
ductor between the ground planes (asymmetric striplines)
have been analyzed using numerical techniques. Kammler
[1] has found values of capacitance for different displace-
ments and widths of the center conductor using Green’s
function -integral equation technique. Mittra [2] has de-
veloped the modified residue calculus technique (MRCT)
for finding charge and potential distributions.

In the present work, a conformal mapping technique is
used to find the impedance potential and field distribu-
tions for an asymmetric stripline. Since the structure is
asymmetric with respect to the plane of the strip, it is not
possible to consider only one quadrant for the purpose of
conformal mapping as was done by Collin [3]. Hence the
transformation of one half of the structure which is sym-
metric with respect to the vertical plane is used in the
present analysis. For this purpose the conformal transfor-
mation used by Yang and Lee [4] in connection with the
transformation of two curved cylindrical plates into a
rectangle has been employed. It is observed that a part of
the expression for the transformation obtained by Yang
and Lee [4] does not follow from the method of integra-
tion suggested in the literature [5]. The exact form of the
expression is given in the present paper.

Application of the above transformation to the struc-
ture shown in Fig. 1 leads to a set of equations from
which the structure required to satisfy the impedance
requirements can be determined easily. The transforma-
tion involves elliptic integrals of the first and third kind.
By separating the elliptic integrals with complex argu-
ments irto real and imaginary parts, exact equations for
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Fig. 1. An asymmetric stripline and its conformal representation.

the equipotential and flux lines are obtained. An expres-
sion for the field distribution in the cross section of the
stripline is derived from the complex potential function by
taking the negative of the complex conjugate of its deriva-
tive. This transformation is more general in that it is
applicable to a perfectly symmetric structure also. Varia-
tion of characteristic impedance with strip width and strip
offset is evaluated. Distribution of the electric field at the
top and bottom ground planes is determined for a particu-
lar case.

II. CoONFORMAL MAPPING

Consider the asymmetric stripline of Fig. 1(a). Ground
planes are assumed to be infinitely wide, and the strip is
assumed to have negligible thickness. The Schwarz—
Christoffel transformation that transforms the upper half-
plane of Fig. 1(b) (¢t-plane) into the shaded region of Fig.
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1(a) (z-plane) is given by [4]
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(t+(1—4)/Vn)dt

o) (r+1/Vn)]

where A, B, C,, m, and n are constants and
1-4
n

O<n<m<land 0< <1,

Carrying on integration in terms of elliptic integrals and
elliptic functions (1) takes the form

Z=Clu—A{l(n;ulm)=Vn f(mnu)} |+B  (2)

where C=C,Vm , t=sin ¢=sn u, and u= F(¢|m) is the
incomplete elliptic integral of the first kind, and II(n; u|m)
is the incomplete elliptic integral of the third kind [6], [7].
The exact expression for f(m,n,u) derived by following
the method suggested in the literature [5] is given by

1

2V(1—n)(m—n)

Am,n,u)=

2(1—n)(m—n)+(1—n sn®u)(n+ nm—2m)

-1
n{n(2n—m——1+2\/(1——n)(m—n) )(1—n sn’u)

2nV(1—n)(m—n) cnudnu
n(2n—m—1+2V (1=n)(m—n) )(1—n sn’)
3)

where sn u, cn 4, and dn u are elliptic functions. Substitut-
ing the boundary conditions at the five points P,, P,, P;,
P,, and P; into (2) and solving the resulting set of equa-
tions, the relations between the constants 4, B, C, m, and
n, and ground plane spacing b, strip width d, and the
separation between the strip and the lower ground plane
b, are obtained as

K(m)

+

A T KOmi) w
B=—b-ln{ m_l }+ib1

27\ 2n—m—142V({1=n)(m—n)

(4b)

ce_ b V(I=n)m=n) 40)

m AVn

b, F(sin~ “Vn/m |m)

1-2-t= Ko (4d)

%= (1;:1/(’_:—”) [ F(sin™'a|m) ~ATl(n; sin~'a|m) ]

L V(1 =n)(1=ma®) —(m—n)(1-a?) (40)

V(= n)(1=ma?) +y(m—n)(1—a?)

where K(m) and [I(n; K(m)|m) are complete elliptic in-

+ B
(t+ D)= D(t+1/Vm )1=1/Vm )]

)

tegrals of the first and third kind,
3.14159, and a=(1—A4)/Vn .

The Schwarz—Cristoffel transformation that maps the
upper half-plane of Fig. 1(b) (z-plane) into a rectangle in
Fig. 1(c) (w'-plane) is given by [4]

0\ l—tz)(l—mt

= C,F(¢|m)+ B,.

respectively, 7=

W—u+zv—Cf

)

Evaluating the constants C, and B, from the boundary
conditions at the points P,, P,, P,, Ps, and Py, the trans-
formation is obtained as

ORI i (L) F(sin™'"Vn/m |m)  ik’(m)
e K(m) K(m) K(m) "
N : (6)
u, and v, shown in Fig. 1(c) are given by
F(sm Vn/m |m)
o K(m) (7a)
=K'(m)/ K(m). (7b)

In the limiting case, i.e., when the strip is placed exactly
midway between the ground planes, the transformations
become

Z——{)—ln{ m—1 }+zb,
2 2msnu—m—142Vm cnudnu
and (82)
_ Flolm) | iK'(m)
W= . 8b
K(m) * K(m) (%)
The expression for strip width reduces to
/b=t {M} (80)
™ 1-Vm

or Vm =tanh (7d/2b) and is of the same form as that
obtained by Collin [3].

I1I.

One half of the structure shown in Fig. 1(a) is trans-
formed into a parallel plate configuration as shown in Fig.
1(c). The width of the parallel plates is 2, and v, is the
separation between them. The total capacitance per unit
length of the stripline is twice that of the parallel plate
capacitor in Fig. 1(c) and is given by

CHARACTERISTIC IMPEDANCE

4
= 50 (92)

vy
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Fig. 2. Variation of characteristic impedance with strip width for diffe-
rent strip displacements.

The characteristic impedance of the stripline is given by

307
— p— . 0

Ve

v

_ 307 K'(m)

Ve K(m)'

The functional dependence of the characteristic imped-
ance on the dimensions of the stripline is evident from
(4a)—(4e), (9a), and (9b). For a given impedance of the
line, the parameter m of the elliptic integrals is obtained
from (9b). The characteristic n of the elliptic integral of
the third kind is obtained from (4d). Remaining constants
A, B, and C follow from (4a), (4b), and (4c), respectively.
Finally, strip width is obtained from (4e). Variation of
characteristic impedance with strip width for different
displacements (b,/6=0.5, 04, 0.3, 0.2, and 0.1) of the
strip from the center is plotted in Fig. 2.

Zy

(9b)

IV. EQUIPOTENTIAL AND FLUX LINES

Since ¢=sin ¢, ¢ is complex for any arbitrary point in
the complex 7-plane of Fig. 1(b). Separating the elliptic
integral with complex argument in (6) into real and im-
aginary parts [7], the complex potential function is ob-
tained as '

W' =u'4 v

_ F(B|m)—F(sin"'"Vn/m |m)
K(m)

K'(m)— F(y|m,) (102)

K(m)

+1i

where m;=1—m

301

Fig. 3. Distribution of equipotential and flux lines for b,/b=1/3
and Ve, Z,=80 Q. Equipotential; - - - Fluxline.
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Fig. 4. (a) Potential distribution in the plane of the strip for b,/b=
1/3 and d/h=0.644. (b) Field distribution on the ground planes.

F(n=i§|m)=F(B|m)=*iF(y|m,)

sin By/1—m, sin’y

cos?y + m sin®B sin%y

cosh { sin =

) cos B cos y sin y\/1 — m sin’B
cos 7 sinh { = B ZY Y\C — B .
cos“y + m sin“f sin“y

The equation

=~ —IZ(lr—n_)- [F(ﬁ’|m)+F(sin'l Vn/m |m)] (10b)

represents the flux line, and the equation
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f K'(m)— F(y|m,)
K(m)
represents the equipotential line.
From the above equations, flux and equipotential lines
are determined for b, /b=1/3 and Ve, Z,=80 Q and are

plotted in Fig. 3. Potential variation in the plane of the
strip is presented in Fig. 4(a).

(10¢)

V. EXPRESSION FOR FIELD DISTRIBUTION

The electric field in the cross section of the stripline is

given by [8]
—— d ' *
E= ( 17 ) (11a)

where the asterisk denotes a complex conjugate. Since the
transformation of the stripline in Fig. 1(a) into the flux
potential plane of Fig. 1(c) is obtained in two steps, (11a)
becomes

__ (4w dt\,
E= (dt dz)'

From (2), (6), and (11b) the expression for the field
distribution is obtained as

(11b)

v
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Fig. 5. Variation of the ratio of the maximum values of the field on the
ground planes with strip displacement.
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The analysis presented here is quite general and can be
used for the determination of impedance, potential, and
field distributions of symmetric as well as asymmetric

CONCLUSIONS

1

E —_—
CK(m) A nbt

(12a)

1—

where
D,=(1-n)(m—n)
D,=2n—m-—1
Diy=n+nm—2m

and v is the potential difference between the strip and
ground plane. In the perfectly symmetric case, the expres-
sion for the field reduces to

E=—;\/—§7—Tm(%)*. (12b)

Thus the electric field in the cross section of the strip-
line has been obtained as an explicit function of the
complex variable ¢, and its real and imaginary parts
represent the vertical and horizontal components of the
field, respectively. From (2)-(4) and (12), field distribu-
tion in the cross section of the line is evaluated. Normal-
ized field distributions at the top and bottom ground
planes calculated for b,/b=1/3 are presented in Fig.
4(b). In the same figure, field distribution at the ground
planes for the perfectly symmetric case obtained from
(12b) is also presented. The ratio of the maximum values
of the electric field at the two ground planes as a function
of the strip displacement, keeping the strip width constant
(d/b=0.5), is plotted in Fig. 5.

2D, V1-£* V1—mi® + VD, (D,— Dyt
1-n>  aC(1—nt?) 2D, + D;(1=n>)+2V D, nV1—¢* V1—ms?

striplines. The analysis leads to exact equations for the
equipotential and flux lines and enables one to calculate
potential and field distribution from which the charge
distribution on the strip can be easily evaluated. The rate
of decay of the field, with distance from the plane of
symmetry, is high, and the field decays to nearly 1 percent
of its original value at a distance of about 1.6 times the
ground-plane spacing.

The field distribution obtained is useful for the formula-
tion of discontinuity problems [9] of apertures in the
ground plane of asymmetric stripline. Investigations on
the radiation properties of slots in the ground plane of a
symmetric stripline reveal that there is appreciable loading
on the line feeding the slot even when the slot is displaced
[10]. This presents a problem in the design of slot array
for narrow beamwidth. It is possible to reduce such load-
ing by using a radiating slot in the farther ground plane of
an asymmetric structure. The analysis on the field config-
uration of the asymmetric stripline, therefore, is of practi-
cal interest.
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Field and Network Analysis of Interacting
Step Discontinuities in Planar
Dielectric Waveguides

TULLIO E. ROZZI, SENIOR MEMBER, IEEE, AND GERARD H. IN'T VELD

Abstract—Planar dielectric waveguides play an important role in elec-
trooptics and at millimeter frequencies. In many laser configurations and
integrated optical components, grooves are etched in the planar surface or
overlays are deposited on it. The step is an idealization of such a
discontinuity. Step discontinuities are seldom isolated. Mostly a cascade is
employed. The aim of this paper is to derive, from a rigorous field analysis,
an accurate finite network description for such cascades, either finite or
infinite, periodic or aperiodic, which takes account also of the continuous
spectrum, Numerical examples are given.

I. INTRODUCTION

Y HE ANALYSIS of discontinuities in open dielectric
’I waveguides is still in its infancy, and very few tech-
niques are known [1]. In this paper we study an important
class of discontinuities, namely, the cascade of steps in a
planar dielectric waveguide, such as shown in Fig. 1. This
is a basic configuration occurring in passive and active
components for integrated optics and optical communica-
tions, such as the grating coupler, the transformer /eche-
lon, and the distributed feedback laser. Corrugated dielec-
tric waveguides are also used for millimeter waves and as
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Fig. 1. Cascade of steps in a planar dielectric waveguide. (a) Cascade

of symmetric steps. (b) Cascade of asymmetric steps.

microwave antenna feeds. Various approximations have
been introduced for dealing with small discontinuities
between monomode guides (see, for instance, [1]-{4]). The
infinite periodic case has been treated extensively and
rigorously (see, for instance, [S] for a most comprehensive
list of references (287), as well as [6]). The problem of an
isolated, large step between two multimode waveguides
has been treated rigorously [7]. The general problem of
arbitrarily large, aperiodic interacting steps is unsolved up
to date. However, the optimum performance of various
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